ELECTRIC POWER DISTRIBUTION, AUTOMATION, PROTECTION, AND CONTROL

James A. Momoh

ELECTRIC POWER DISTRIBUTION, AUTOMATION, PROTECTION, AND CONTROL

James A. Momoh Howard University, Washington DC, USA

lan súnd fan her súrs he TACAS NA THENS THE TH 07-07 03696

CRC Press is an imprint of the Taylor & Francis Group, an **informa** business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742

© 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

International Standard Book Number-13: 978-0-8493-6835-6 (Hardcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www. copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Momoh, James A., 1950-Electric power distribution, automation, protection, and control / James A. Momoh.

p. cm. Includes bibliographical references and index. ISBN 978-0-8493-6835-6 (alk. paper)

1. Electric power distribution--Automation. 2. Electric power distribution--Automatic control. I. Title. TK3001.M63 2008 2007022016

621.319--dc22

Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com

and the CRC Press Web site at http://www.crcpress.com

Electric Percer Distribution, Automation, Protection, and Grendi

and a subscript of the Gen

Contents

		2.9.2.1 Principles and Chronich Incident metals 1	
Pre	eface		XV
Au	thor		. xvii
C	ante	r 1 Introduction to Distribution Automation Systems	1
11	Hist	orical Background	1
1.1	Distr	ribution System Topology and Structure	2
1.2	Distr	ribution Automation (DA) and Control	5
1.0	Sum	mary	6
1.1	Juin	2.10.3 Switch Model	
Ch	apter	r 2 Computational Techniques for Distribution	
	Syst	ems	9
2.1	Intro	duction	9
2.2	Com	plex Power Concepts	9
	2.2.1	Power Equations	11
		2.2.1.1 Resistive Element	11
		2.2.1.2 Inductive Element	12
		2.2.1.3 Capacitive Element	12
	2.2.2	Single-Phase Power Formulations	13
	2.2.3	Balanced Three-Phase Power Formulations	14
2.3	Balan	nced Voltage to Neutral-Connected System	15
hh	2.3.1	Wye- or Y-Connected System	15
	2.3.2	Delta- or Δ-Connected System	16
2.4	Powe	er Relationship for 3φ Y-Δ-Connected System	18
2.5	Per-U	Jnit System	19
	2.5.1	Conversion of a Per Unit from a New	
		Base of Reference	20
	2.5.2	Per-Unit Formulations for 3¢ System	21
2.6	Calcu	lation of Power Losses	22
2.7	Voltag	ge Regulation Techniques	24
	2.7.1	Capacitor Banks for Voltage Regulation and Power	
		Factor Correction	24
		2.7.1.1 Shunt Capacitor Installed in Parallel to	
		Distribution Network Model	24
		2.7.1.2 Calculation of Voltage Drop for a	
		Distribution Feeder	26
	2.7.2	Tap-Changing Method for Voltage Regulation	
			2000

υ

		Veltage Regulating Transformers	27
	2.7.3	Phase Chifter or Regulating Transformer	28
	2.7.4 Malta	Phase Similer of Regulation	.30
2.8	Voltage	e-Sag Analysis and Calculation minimum	31
2.9	Equipr	Rent Modeling	.31
	2.9.1	Power Iransformers	.31
	2.9.2	Distribution Iransformers	.33
		2.9.2.1 Principles and Operating Puriounieritary	34
	2.9.3	Autotransformer Model	35
	2.9.4	Cogenerator Model	36
	2.9.5	Synchronous Generator Model	36
	2.9.6	Inverter-Connected Generator in Photovoltaic Systems	37
	2.9.7	Synchronous Generator Model	27
2.10	Comp	onents Modeling	27
	2.10.1	Line Model in Distribution Systems	20
	2.10.2	Shunt Capacitor Model	.00
	2.10.3	Switch Model	.30
	2.10.4	Load Models	.38
		2.10.4.1 Constant Power Loads $(k_1 = k_2 = 0)$.38
		2.10.4.2 Constant Current Loads $(k_1 = k_2 = 1)$.39
		2.10.4.3 Constant Impedance Loads $(k_1 = k_2 = 2)$.39
		2.10.4.4 Composite/Nonlinear Loads	.39
	2.10.5	SVC Device Model	.39
2.11	Distrib	oution System Line Model	.40
2.12	Distril	oution Power Flow Analysis	.41
2.13	Distril	oution System Topology for Development of Load Flow	.43
2.14	Review	w of Classical Power Flow Methods	.43
1.1	2.14.1	Gauss-Seidal Method	.44
	2.14.2	Newton-Raphson Method	.44
	2.14.3	Fast-Decouple Power Flow	.45
2.15	Distri	bution Power Flow Methods	.47
	2.15.1	Description of Distribution Power Flow Methodologies	.47
		2.15.1.1 Method 1: Forward/Backward Methods	.47
		2.15.1.2 Method 2: Power-Flow Method Based on	
		Sensitivity Matrix for Mismatch Calculation	.48
		2.15.1.3 Method 3: Bus-Impedance Network Method	.51
216	Illustr	ative Examples	.53
2.10	2161	Distribution Transformer Considered for Use as a	
	2.10.1	Step-Down Autotransformer	.53
	2162	Transformer Short Circuit during an Open-Circuit Test	54
	2.10.2	Unbalanced Set of Voltages	
	2.10.5	Newton-Raphson Method	
	2.10.4	Polar Formulation of Load-Flow Fountions	
	2.10.0	Cause-Seidel Method	61
0.15	2.10.0	Gauss-Deluer Methou	.63
2.1/	Sumn	Lai y	

Ch	apter	3 Distribution System Protection and Control	.67
3.1	Introd	uction	
	3.1.1	Introduction to Symmetrical Components	00
	3.1.2	Sequence Networks Used in Fault Analysis	09
		3.1.2.1 Computation of Phase and Total Power Using	70
		Sequence Networks	
		3.1.2.2 Development of Sequence Networks for	70
		Power Systems	
3.2	Single	Line-to-Ground Fault	
3.3	Doubl	e Line-to-Ground Fault on Phase B and C	
3.4	Three-	Phase Fault Analysis	/8
3.5	Line-te	o-Ground and Line-to-Line Faults	80
	3.5.1	Single Line-to-Ground Fault	80
	3.5.2	Line-to-Line Fault	81
3.6	Protec	tion Systems	83
	3.6.1	Relay	84
	3.6.2	Instrument Transformers	84
		3.6.2.1 Accounting for Saturation in CT	86
	3.6.3	Reclosers	86
128	3.6.4	Fuses	87
	3.6.5	Sectionalizer	89
3.7	Protec	tive Relay Technology	89
	3.7.1	Digital Relaying	90
	3.7.2	Electromechanical Relay Technology	91
	3.7.3	Induction Disc Relays	91
		3.7.3.1 Example 1, Coordinating Time-Delay	
		Overcurrent Relays in a Radial System	92
		3.7.3.2 Example 2, Radial System Protection	94
3.8	Systen	n Protection in General	97
3.9	System	n Protection for Different Power System	11.4
	Zone (Components	98
	3.9.1	Line Protection with Impedance Distance Relays	98
		3.9.1.1 Directional Overcurrent Relays	98
		3.9.1.2 Impedance Relay	98
	3.9.2	Mho Relays	99
	3.9.3	Ohm Relays	101
	3.9.4	Generator, Buses, and Transformer	103
		3.9.4.1 Generator Protection	103
		3.9.4.2 Bus Protection with Differential Relays	104
		3.9.4.3 Transformer Protection with Differential Relays	105
3.10	Illustra	ative Examples	105
	3.10.1	Example 1	105
	3.10.2	Example 2	106
	3.10.3	Example 3	107
			and a lit

	3104	Example 4 Three-Phase Fault	
12 24	5.10.4	Example 4, milee Finder & Cound (SIC) Fault	110
	3.10.5	Example 5, Single-Line-to-Ground (SLG) Fault	
3 11	Summ	arv	112
3.11	Sumn	ary	

Chapter 4 Distribution System Reliability and

	Maintenance	115
4.1	Introduction	115
4.2	Reliability Evaluation	116
76	4.2.1 Inputs Required for Historical Assessment	116
4.3	Terminology/Definitions	117
4.4	Reliability Indices	118
4.5	Methods of Reliability Analysis	122
68.	4.5.1 Analytical Methods	123
	4.5.2 State Space Diagrams	123
	4.5.2.1 Case A, Series Components	124
	4.5.2.2 Case B, Parallel Systems	124
	4.5.2.3 Case C, Series and Parallel System	124
4.6	Failure Modes and Effects Analysis (FMEA) Method	125
4.7	Event-Tree Analysis Method	125
4.8	Fault-Tree Analysis Method	126
4.9	Unavailability of Power Calculations from the Cut Set	127
	4.9.1 Fault Tree Based on Minimal Cut Set	127
	4.9.1.1 Determine Power Interruption and	
	Unavailability	127
	4.9.1.2 Methodological Approach to Identifying	
	Minimum Cut Set	129
	4.9.2 Nonminimal Cut Set in Complete Unavailability	130
	4.9.3 Summary of Findings Using Minimal Cut Sets to	
	Identify Causes of Failures	131
4.10	Simulation Techniques for Reliability Analysis	132
4.11	Simulation Methods Utilized for Distribution	1
	Reliability Analysis	133
	4.11.1 Monte Carlo Simulation Method	133
	4.11.1.1 Sequential Monte Carlo Method	
	4.11.1.2 Nonsequential Monte Carlo Simulation	134
	4.11.1.3 General Statement: Monte Carlo Simulation	134
4.12	Evaluation of Distribution Reliability Analysis Method	135
4.13	Reliability Database Design	135
	4.13.1 DISREL	135
	4.13.1.1 General Information on DISREL	
	4.13.1.2 Main Features	136
	4.13.1.3 Program Capabilities	136
	4.13.1.4 Applications of DISREL	13/
4.14	Maintenance and Reliability	138
	4.14.1 Repair-to-Failure Process	138

Contents and another a

	4.14.2	Repair Failure: Repair Process	
177	4.14.3	Failure-to-Repair Process	
	4.14.4	Combined Reliability	
4.15	Mainte	nance of Distribution Systems	
	4.15.1	Preventive Maintenance	
	4.15.2	Corrective Maintenance	149
4.16	Reliabi	lity-Centered Maintenance	
4.17	Securit	y and Reliability-Centered Maintenance	153
4.18	Impler	nentation Plan for Various Component-Maintenance	100
080	Techni	ques	
	4.18.1	Overhead Lines	
	4.18.2	Circuit Breakers	154
	4.18.3	Transformers	155
	4.18.4	Substation Equipment	155
4.19	Illustra	ative Examples	156
188	4.19.1	Example 1	156
	4.19.2	Example 2	158
	4.19.3	Example 3	159
	4.19.4	Example 4	
4.20	Summ	ary	
		5. Mixed-Interer Programminganof mathematical	A bac
Ch	apter	5 Distribution Automation and Control Functions	165
5.1	Introd	uction	105
5.2	Dema	nd-Side Management	166
	5.2.1	Modeling Challenges and Methodology for	
		Demand-Side Management	167
	5.2.2	Conceptual Overview of Methodology for DSM Studies	168
5.3	Voltag	ge/VAr Control	168
	5.3.1	Methods of Voltage/VAr in Distribution Automation	169
	5.3.2	Evaluation of Methods Used for Voltage/VAr Control	
	5.3.3	Modeling of Voltage/VAr Control Options	
	5.3.4	Formulation of Voltage/VAr	
	5.3.5	System Operating Constraints	
	5.3.6	Methodology	
5.4	Fault	Detection (Distribution Automation Function)	172
	5.4.1	Classical Approaches Used for Solving	
		Detection Techniques	
		5.4.1.1 Harmonic Sequence Component Technique	173
		5.4.1.2 Amplitude Ratio Technique	173
		5.4.1.3 Phase Relationship Technique	173
		5.4.1.4 Energy Technique	173
		5.4.1.5 Randomness Technique	
	5.4.2	Modeling of Faults/Classification	
5.5	Troub	ole Calls	
5.6	Resto	oration Functions	

	561	Evaluation of Methods	176
	5.6.2	Optimization Formulation	177
	5.6.2	Optimization Constraints	178
	5.0.5	Methodology	179
	5.0.4 D	Methodology	
5.7	Recon	nguration of Distribution Systems	180
	5.7.1	Methods Used for Reconfiguration	180
	5.7.2	Formulation of Modeling of Reconfiguration	100
		5.7.2.1 Method of Load Balancing 1	101
		5.7.2.2 Method of Load Balancing 2	101
		5.7.2.3 Method of Minimizing Voltage Deviation	. 103
		5.7.2.4 Algorithm for Single-Loop Voltage Minimization	. 183
5.8	Power	Quality	.185
	5.8.1	Techniques for Modeling Harmonics in Power-Quality-	
		Assessment Methodology	.185
	5.8.2	New Approaches of Power Quality	.187
5.9	Optim	ization Techniques	.188
	5.9.1	Objectives	.188
	5.9.2	Constraints	.189
	5.9.3	Classical Solution	.190
	5.9.4	Linear Programming	.192
	5.9.5	Mixed-Integer Programming	.193
	5.9.6	Interior-Point Linear Programming	.195
	597	Sequential Quadratic Programming	.198
5 10	Illustr	ative Examples	.200
5.10	5 10 1	Example 1	200
5 11	Summ	lorv	201
5.11	Junin	iary	
Ch	nter	6 Intelligent Systems in Distribution Automation	205
6.1	Introd	uction	205
6.1	Dictrik	action Automation Euroption	206
0.2	Antific	ial Intelligence Methode	207
6.3	Artific	Furgert System Technicus	207
	6.3.1	Artificial Network Network	200
	6.3.2	Artificial Neural Networks	209
		6.3.2.1 Evolution of Connection Weights	210
	6.3.3	Fuzzy Logic	210
		6.3.3.1 Fuzzy Sets and Systems	211
		6.3.3.2 Fuzzy Sets	211
	- net line	6.3.3.3 Fuzzy Systems, Complexity, and Ambiguity	211
	6.3.4	Genetic Algorithms (GA)	212
6.4	Intelli	gent Systems in Distribution Automation	213
	6.4.1	DSM and AI	213
6.5	Voltag	e/VAr Control	215
6.6	Netwo	ork Reconfiguration via AI	216
	6.6.1	Further Research Work in Network Reconfiguration	5.20
		Using Artificial Intelligence	217

6.7	Fault	Detection, Classification, and Location in	10
250	Distri	bution Systems	217
	6.7.1	Use of AI Techniques for Fault Analysis	218
6.8	Sumn	nary	218
		SCADA (Supervisory Control ded) Interé deskarten un	
Ch	anter	7 Renewable Energy Options and Technology	223
71	Introd	viction	223
7.1	Dictri	huted Concration	223
7.2	Mork	ing Definition and Classification of Penewahle Energy	225
7.5	Domos	ushla Energy Ontions	220
7.4	Renew 7.4.1	Solar	220
	7.4.1		220
		7.4.1.1 Modeling	228
		7.4.1.2 PV Systems	231
		7.4.1.3 V-I Characteristics	231
	7.4.2	Wind Turbine Systems	232
		7.4.2.1 Modeling	233
		7.4.2.2 Impact of Tower Height on Wind Power	234
		7.4.2.3 Emission Control Technologies	234
	7.4.3	Biomass-Bioenergy	235
		7.4.3.1 Advantage and Disadvantages of	
		Biomass Power	236
	7.4.4	Small and Micro Hydropower	236
7.5	Other	r Nonrenewable Energy Sources	237
	7.5.1	Fuel Cell	237
		7.5.1.1 Operation of Fuel Cells	238
		7.5.1.2 Sample Calculation	239
	7.5.2	Ocean Energy	241
	7.5.3	Geothermal Heat Pumps	242
	7.5.4	Microturbine and Sterling Engine	242
		7.5.4.1 Description	242
		7.5.4.2 Sterling Engine	243
	7.5.5	Comparison	244
7.6	Distri	ibuted Generation Concepts and Benefits	244
	7.6.1	Categories of DG	245
	7.6.2	Criteria for DG Concepts	245
	7.6.3	DG Benefits	245
7.7	Illust	rative Examples	248
	7.7.1	Example 12	248
	7.7.2	Example 2	249
	7.7.3	Example 32	251
	7.7.4	Example 4	252
	7.7.5	Example 5	253
	7.7.6	Example 6	254
7.8	Summ	nary	255
			and a

Cha	pter 8 Distribution Management Systems
81	Introduction to EMS
0.1	811 DMS and EMS
82	Functions of EMS
0.2	SCADA (Supervisory Control and Data Acquisition)
8.1	RTLL (Remote Terminal Units)
0.4	Distribution Management System (DMS)
0.5	8 5 1 System Hardware for DMS Station
	8.5.2 SCADA System Functions for DMS
	8.5.2 DMS Functions
	8.5.4 Substation and Feeder SCADA
	8.5.5 Feeder Automation
	8.5.5 Fault Location, Isolation, and Restoration (FLIR)267
	8552 Voltage/VAr Control
	8553 Voltage Control
	8554 Substation Automation (SA)
	8555 Trouble-Call and Outage Management (TCOM)
	8556 Reconfiguration Function
	856 Distribution System Analysis (DSA)
	857 Load Management System (LMS)
	858 Geographic Information System (GIS)
	859 Customer Information System (CIS)
86	Automatic Meter Reading (AMR)
0.0	861 Advanced Billing
	8.6.2 Special Features and Benefits of AMR
	863 Advancement in AMR Technology
	864 Advances in Billing Technology
97	Cost-Benefit Analysis (CBA) in Distribution Systems
0./	871 Cost-Benefit Analysis Methodology
	872 Function / Payback Correlation 273
00	Summary
0.0	Summary
~	
Ch	apter 9 Communication Systems for Distribution
	Automation Systems
9.1	Introduction
	9.1.1 What is Telecommunication?
9.2	Telecommunication in Principle
9.3	Data Communication in Power System Distribution Network
9.4	Signal Representation
	9.4.1 Communication Technology for Signal Description
9.5	Types of Telecommunication Media
	9.5.1 Copper Circuit
	9.5.2 Twisted Pair
	9.5.3 Coaxial Cable
	9.5.4 Fiber Optics

Contents

	055	Microwave / Radio	.283
	9.5.5	Collular Transmission	.283
0.6	9.5.0 Comm	Central Manshussion Techniques	.284
9.0	0.6.1	Amplitude Modulation (AM)	.284
	9.0.1	Frequency Modulation (FM)	.285
	9.0.2	9621 Pulse Modulation (PM)	.285
		9622 Frequency Modulation	.286
		9623 Amplitude Modulation	.286
	963	Modulation Indices	.287
	9.6.4	Digital Modulation	.287
	7.0.4	9641 Asynchronous/Synchronous Communications	.288
		9642 Intelligent Electronic Devices (IEDs)	.289
97	Comm	unication Networking	.290
2.1	971	Local Area Network	.290
	2.7.1	9711 Method of Transmission in LAN	.291
		9712 LAN Topologies	.292
	972	Metropolitan Area Network (MAN)	.293
	973	Wide Area Network (WAN)	.294
	1.1.0	9731 Types of WAN Connection	.294
	974	Types of Computing Connectivity	.295
98	Frame	-Relay Communications	.295
7.0	981	Frame-Relay Standardization	.296
	982	Switched Virtual Circuits	.297
	983	Permanent Virtual Circuits	.297
	984	Frame-Relay Handling of Congestion Error	.297
	985	Frame-Relay Network Implementation	.298
	7.0.0	9851 Public-Carrier-Provided Networks	298
and a		9852 Private Enterprise Networks	298
	986	Frame-Relay Frame Formats	299
00	2.0.0 Comm	unication Standards Overview	301
9.9	001	Standards Bodies	302
	0.0.2	Suite of Standards	302
	9.9.2	Interconnection Standards and Regulations	
0.10	9.9.5 OCI M	Interconnection Standards and Regulators	.304
9.10	0.10.1	Description of OSI Model	
	9.10.1	0 10 1 1 Transport Lavers or Lower Lavers	305
		9.10.1.2 Application Layers or Upper Layers	306
	0 10 2	9.10.1.2 Application Layers of Opper Layers	307
0.11	9.10.2 Distail	Message Handling	308
9.11	Distrit	DNIP2 Protocol Three Lavor Structure Description	309
0.10	9.11.1	DNP3 Protocol Infee-Layer Structure Description	309
9.12	Othity	Operation Application	300
0.10	9.12.1 D	Line Corrier Communication	211
9.13	Power	-Line Carrier Communication	211
	9.13.1	Introduction	211
	9132	PLC Architecture	511

xiii

	0 13 2 1 Line Traps	
	0 13 2 2 Line-Tuning Units	
	0 12 2 3 Hybrids	
	9.13.2.5 Hybrids	
	9.13.3 Broadballd over 1 ower Ellies (DI E)	
	9.13.4 Standards	314
285	9.13.5 Current Irends and Applications	316
9.14	Security in Telecommunications and Information Technology	
	9.14.1 Vulnerabilities, Threats, and Risks	
	9.14.2 Security Architecture Elements in IIU-1 X.805	
	9.14.3 Privacy and Data Confidentiality	
	9.14.4 Authentication	
	9.14.5 Data Integrity	
	9.14.6 Nonrepudiation	
	9.14.7 Other Dimensions Defined in X.805	
	9.14.8 Security Framework Requirements	
	9.14.9 Information Security Goals	
9.15	Illustrative Examples	
	9.15.1 Example 1	
9.16	Summary	
	A Date of Committee Committee a	
Ch	anter 10 Enilogue	325
10.1	Challenges to Distribution Systems for a Compatibles	325
10.1	Challenges to Distribution Systems for a Competitive	225
10.0	Power Utility Environment	
10.2	Protection	
10.3	Demand Response	
10.4	Communication Advances	
10.5	Microgrid	
10.6	Standards and Institutional Barriers	
10.7	Pricing and Billing	
Glo	ssary	
	12 Suite of Stradarts	
Ref	erences	
Ind	ex	

Preface

Stapping the antibility of the extendion of distribution automobility of action of the second of th

This book is intended to introduce distribution engineering as a growing area suitable for studying new trends in computation, automation, and control techniques. The idea is to present the basic concepts for assessment, design, formulation, and analysis of distribution performance. This is timely, given the growing research interest, the desire for automation, and the commitment to build an efficient and cost-effective distribution system in a competitive utility environment.

The textbook is intended as a resource for electrical engineering students, as well as professional engineers, who are interested in learning the fundamentals of distribution engineering analysis. The book presents computation and automation techniques in a simple, easy-to-follow treatment. Background requirements include a basic concept of electric circuits and a working knowledge of foundation mathematics. The text is arranged from basic distribution principles through renewable energy resources, computation tools and techniques, reliability and maintenance, distribution automation, and telecommunications. The topics are covered with illustrative examples and some case studies to illuminate the topic as needed. Overall, the book provides both analytical basics and practical intuition for the future design of distribution systems.

- Chapters 1 and 2 treat the foundation of distribution automation by summarizing distribution topology, modeling, and different computation techniques.
- Chapter 3 introduces distribution protection and control schemes for self-defense of distribution systems under different fault types; different relay-protection schemes are also introduced, and some illustrative examples for coordination and relay settings are given.
- Chapter 4 discusses distribution reliability, computation techniques, and maintenance concepts. These topics are helpful in evaluating the performance of distribution systems to guide the distribution operator, planner, and maintenance engineer in choosing among the tools available to enhance practical "rule of thumb" judgment.
- Chapter 5 is dedicated to distribution automation and control functions. Here, we deal with the different automation functions and review various modeling, analytical, and computational methods using a background in optimization techniques. Here, only analytical

functions and statements of outstanding work done by researchers and the author are given as working examples.

- Chapter 6 deals with the extension of distribution automation functions and computation using intelligent systems (IS). This is an important topic, given the ample engineering rules and new trends in computational intelligence that can be used in the design of future distributed systems.
- Chapter 7 is concerned with renewable energy sources; its models, characteristics, benefits, drawbacks, and possible areas of application are treated.
- Chapter 8 presents new advances in communication technology for data acquisition, monitoring, control, load management, billing, and metering of distribution systems.
- Chapter 9 provides a foundation of telecommunications from basic theory to practice, including modulation, networking, frame relay, standards, and security strategy. Communication concepts have become critical to power system distribution automation and control in today's competitive environment, which demands ever-greater reliability and efficiency.

It is hoped that the introduction of new trends in IT (information technology) and artificial intelligence (AI) will enhance future performance of distribution and that the reader will continue to engage in the developmental work done by researchers. The goal of the book will be achieved if distribution engineers will adapt and build future generations of distribution systems using the technology discussed.

The author is indebted to outstanding research by colleagues, sponsored conferences, workshops, popular text in related material, and sponsored research in distribution automation of which I have had personal involvement. These involve research and development efforts supported by NSF, DOE Oakridge National Laboratory, NREL, NASA, and LADWP in the development and testing of various algorithms for the distribution automation and reliability study of optimization for power management and distribution applicable to both utility and navy ship systems.

I remain indebted to my colleagues who offered encouragement and critical reviews of the book during the preparation stage. I wish to thank my graduate student, Garfield Boswell, who kept the hope alive, as well as other graduate and undergraduate students who came in at the last minute to help get this book done!

Finally, I offer my deepest personal gratitude to my family, who always showed encouragement for me to get this book done.